BIG DATA TECHNOLOGIES

1. HADOOP

2. SPARK

HADOOP

Learning Outcome Statements

- · Learn how to make the most efficient use of Hadoop and its ecosystem
- · Gain an insight into many of Hadoop libraries and packages
- Learn about Hadoop MapReduce and HDFS.
- Learn to control Hadoop ecosystem through various shell commands.
- Gain expertise in Hadoop technology and its related components.

Key Contents

- What Is Big Data
 - Characteristics Of 'Big Data'
 - $\,\circ\,$ Advantages Of Big Data Processing
- Introduction to Hadoop
 - Components of Hadoop
 - Features Of 'Hadoop'
 - \circ Network Topology In Hadoop
- Hadoop Installation
- HDFS
 - \circ Read Operation
 - $\,\circ\,$ Write Operation
 - Access HDFS using JAVA API
 - Access HDFS Using COMMAND-LINE INTERFACE

- Mapreduce
 - \circ How MapReduce works
 - $\circ~$ How MapReduce Organizes Work
 - $\circ~$ Understanding MapReducer Code
- Counters & Joins In MapReduce
- Flume and Sqoop

 Some Important features of FLUME
- Pig
 - $\,\circ\,$ Introduction to PIG
 - Pig Installation

S PA R K

Learning Outcome Statements

- Use the core Spark APIs to operate on data
- Articulate and implement typical use cases for Spark
- Build data pipelines and query large data sets using Spark SQL and DataFrames
- Work with relational data using the GraphFrames APIs
- Understand how a Machine Learning pipeline works
- Understand the basics of Spark's internals

Key Contents

- Spark Overview
- In-depth discussion of Spark SQL and DataFrames, including:
 - The DataFrames/Datasets API
 - \circ Spark SQL
 - $\,\circ\,$ Data Aggregation
 - \circ Column Operations
 - $\,\circ\,$ The Functions API: date/time, string manipulation, aggregation
 - Joins & Broadcasting
 - $\circ~$ User Defined Functions
 - Caching and caching storage levels
 - Use of the Spark UI to analyze behavior and performance
- In-depth discussion of Spark internals
 - o Cluster Architecture
 - The Catalyst query optimizer
 - $\,\circ\,$ The Tungsten in-memory data format
 - o How Spark schedules and executes jobs and tasks
 - o Shuffling, shuffle files, and performance
 - $\,\circ\,$ How various data sources are partitioned
 - $\,\circ\,$ How Spark handles data reads and writes

- Spark Structured Streaming
 - $\,\circ\,$ Sources and sinks
 - Structured Streaming APIs
 - $\circ~$ Windowing & Aggregation
 - $\circ~$ Checkpointing & Watermarking
 - Reliability and Fault Tolerance
 - $\,\circ\,$ Kafka Integration
- Overview of Spark's MLlib Pipeline API for Machine Learning
 - o Transformer/Estimator/Pipeline API
 - Perform feature preprocessing
 - $\,\circ\,$ Evaluate and apply ML models
- Graph processing with GraphFrames
 - Transforming DataFrames into a graph
 - Perform graph analysis, including Label
 Propagation, PageRank, and Shortest Paths